

Whitman Books Online Documentation

Introduction:

	Introduction

User Guides:

	Login Page

	Navigating the Market

	Navigating your Profile

	Buying a Book

	Selling a Book

Developer Guides:

	Front End Description

	API Guide

	API Autodoc

Extra Documents:

	Analysis Document

	Design Document

	Ethical Concerns

	Helpful Links

	Meeting Notes Workflow

	Requirements Document

	Meeting Notes

	Privacy Policy

Introduction

Whitman Books Online is a platform for buying and selling used textbooks. At every transition between semesters, there’s a rush to offload textbooks from the past semester and buy new ones for the upcoming semester. Currently, this is done through either word of mouth or, more commonly, email listservs within the whitman network. Unfortunately, these are quite inefficient and unreliable systems. Additionally, because buying and selling textbooks happens pretty much only during semester transitions, the event crowds out other items being sold more evenly throughout the school year. Whitman Books Online is a solution to this problem. This unique platform specifically for textbooks aims to diminish the traffic on email listservs during the proverbial textbook rush and create an efficient and pleasant experience for both buyer and seller.

Login Page

[image: ../_images/login_page.png]

	Clicking the login button opens a prompt

	This service is exclusively for Whitman students and requires you to use a Whitman email account

	Your user profile is created automatically from your Whitman account

Navigating the Market

[image: ../_images/market_page.png]

	The Market tab displays all listings posted of books for sale

	Each listing displays the title of the book, the author of the book, the price and condition of the book being sold, the name and email of the Whitman student who posted the listing and a Contact Seller button to contact that student and ask to purchase their book

	Listings can be navigated using the Search tab (*Currently not functioning, Advanced Search to be added)

Navigating your Profile

[image: ../_images/profile_page-no_listings.png]

	Click on the Profile tab at the bottom of the screen to navigate to your profile

	Your Profile page will display all of the listings you have posted to the market (*Currently books you fill out to sell will not be added under your listings)

Buying a Book

[image: ../_images/market_page-contacting_seller.png]

	Click on Contact Seller

	A drop-down menu will appear that includes both the seller’s email and a pre-made email message asking to purchase the book they’ve listed.

	Clicking the Copy button next to the email or pre-made message to copy either

	In your email, paste the message into the body of the email and send the email to the email address of the seller

	Wait for a response from the seller to coordinate buying their book!

Selling a Book

[image: ../_images/sell_page-isbn_prompt.png]

	Click on the Sell tab at the bottom of the screen

	A prompt appears requesting an ISBN for the book you are trying to sell. This can typically be found on the back cover of the book

[image: ../_images/sell_page-inputting_isbn.png]

	Adding the ISBN will bring up a publisher description of the book you are trying to sell. Confirm that the description matches the book you are selling before continuing. If it does not, double-check that you have added the correct ISBN

[image: ../_images/sell_page_condition.PNG]

	Choose from the Condition drop down menu the option that best describes the condition of your book. Be accurate and honest in choosing the most apt description.

[image: ../_images/sell_page-inputting_price.png]

	Finally, add the Price you are wishing to sell the book for. Be sure to only add numbers into this prompt in order to have a valid price.

	After clicking submit, a listing for your book will appear in the market.

Front End Description

Written by Richard Farman

Edited and converted to reStructuredText by Jeremy Davis

Updated 2018-05-13

Overview

The front end of the app is built with a modern web development stack. We use the Model/View/Controller paradigm to separate responsibilities and allow our app to have a dynamic and interchangeable structure.

Our components are essentially JavaScript classes that render and return HTML/CSS. We connect these classes to various JavasScript functions that use Redux to dispatch actions, like getting a list of books from the database. These dispatched actions then modify our data model, which is then displayed to the user by React.

The front end allows us to make requests and display responses from a database. So using our web client, any Whitman College student can login to the app, submit a book with a listing attached to the server, and see that listing propagated to all other clients using the app. An exchange shows all the listings that have been added by other users and allows you to contact sellers with an offer for their book. Your profile shows all of your personal listings for easy management.

Our front end is designed with a simple, cohesive, and modern experience in mind for both clients and developers alike. With these technologies, we are best prepared to take on the challenges of project scope and scale as we continue building our project.

Technologies Used

HTML (HyperText Markup Language) is the standard markup language used to create websites. HTML is rendered into Document Object Model (DOM), which is read by the browser to construct a web page. CSS describes the presentation of HTML content. Putting these two together, we can start building for the web.

Javascript is a programming language that can add interaction and extend the functionality of websites. JavaScript runs on the client side of the web, which can be used to control how the web page reacts on the occurrence of an event. JavaScript is an easy to learn and powerful scripting language that is widely used for controlling web page behaviour.

We use the React.js library to create declarative and composable user interfaces that form the view for our clients. Using Redux.js on top of React allows us to add interactive actions to our app, serving to form the model and controller.

Redux is a predictable state container for JavaScript apps. It helps you write applications that behave consistently, run in different environments (client, server, and native), and are easy to test. On top of that, it provides a great developer experience, such as live code editing combined with a time traveling debugger.

The whole state of your app is stored in an object tree inside a single store. The only way to change the state tree is to emit an action, an object describing what happened. To specify how the actions transform the state tree, you write pure reducers.

Redux Thunk middleware allows you to write action creators that return a function instead of an action. The thunk can be used to delay the dispatch of an action, or to dispatch only if a certain condition is met. The inner function receives the store methods dispatch and getState as parameters.

Reselect is a simple library for creating memorized, composable selector functions. Selectors can compute derived data, allowing Redux to store the minimal possible state. Selectors are efficient. A selector is not recomputed unless one of its arguments change. Selectors are composable. They can be used as input to other selectors.

API Guide

Written by Sean Miller.

Converted to reStructuredText by Tyler Phillips.

Updated 2018-04-11.

Run the API: python3 app.py

All files must be in the same directory.

Reset the database: rm data.db

The API will run on http://127.0.0.1:5000/some_endpoint. Each time the API
runs, it will generate a new data.db.

1. Adding Books to the Database

To add a book to the database, send a POST request to:

/book/isbn_of_book

The body of the request should be the JSON body return from a Node.ISBN query.
All JSON parsing of the body will happen on the back end.

2. Adding a User to the Database

To add a user to the database, send a POST request to:

/user/google_token_of_user

The body of the request should look like this:

{
 "imageURL": "http://hello.com",
 "name": "Big Will",
 "email": "ashleygw@whitman.edu",
 "givenName": "Thick Ricky",
 "familyName": "Slick Nicky"
}

3. Adding a Listing to the Database

To add a listing to the database, send a POST request to:

/listing/isbn_of_book

The body of the request should look like this:

{
 "price": 27.99,
 "condition": "good",
 "google_tok": "1A",
 "status": "selling"
}

google_tok must be the Google token of the user making the listing. At the
moment, the only condition s that I expect are "new", "good",
"ehh", and "bad" so that Python string comparisons can uphold that
order (In this case, we are using first-character comparison.). For the MVP,
status should always be "selling". Price must be a float, not a
string. If google_tok does not match a user in the database, or if the
isbn in the endpoint does not match a book in the database, the request
will fail.

4. User -> Listing -> Book

This series of steps will be executed when a user wants to see their own
listings on their user profile.

First, a GET request is sent to:

/book/google_token_of_user

The body will look like this:

{
 "givenName": "Thick Ricky",
 "familyName": "Slick Nicky",
 "name": "Big Will",
 "listings": [
 1,
 2
],
 "google_tok": "1A",
 "email": "ashleygw@whitman.edu",
 "imageURL": "http://hello.com"
}

listings is a list of all listing_id s that correspond to each of the
user’s listings. The other information can be used to load the user’s profile,
including the image tied to their Google account, name, email address, etc.

Second, use listings to make the following GET request:

/listing/listing_ids,separated,by,commas

The response will look like this:

{
 "listings": [
 {
 "status": "selling",
 "listing_id": 1,
 "timestamp": "2018-04-16 19:57:26.674665",
 "condition": "ehh",
 "price": 24.99
 },
 {
 "status": "selling",
 "listing_id": 2,
 "timestamp": "2018-04-16 19:57:35.568820",
 "condition": "good",
 "price": 27.99
 }
],
 "isbns": [
 1
]
}

listings is all of the listings tied to the user. isbns is the list of
ISBNs corresponding to the books paired with these listings. Notice that, in
this case, both listings are for the same book, which has an isbn of 1.
Use the listings data to edit the user’s home page.

Third, use isbns for the following GET request:

/book/isbns,seperated,by,commas

The response will look like this:

{
 "books": [
 {
 "subtitle": "The Musical",
 "listing_ids": [
 1,
 2
],
 "canonicalVolumeLink": "TRIPLElol",
 "title": "Moby Dick",
 "isbn": 1,
 "thumbnail": "http://blahBLAHblah",
 "smallThumbnail": "http://blahblah",
 "authors": "Will Smith, Edgar Wright",
 "publishedDate": "1975",
 "categories": "Artificial Intelligence, Computer Science",
 "infoLink": "doublelol",
 "previewLink": "lolwhatisthis"
 }
]
}

This information will be used to construct the book objects. Notice that
users, listings, and books will need to be matched thorugh listing_id.
This will be cumbersome for the front end, but, hopefully, it will be more
streamlined in the final product.

5. Book -> Listing -> User

This pipeline will be used when a user is looking to buy a used textbook from
our site.

First, the user will search by author, title, subtitle, category, or date
published. The response the user types into the search bar will be used in a
GET request to the following endpoint.

Important: The user’s search query must have spaces replaced by underscores
(“_”) and must be converted to all lower case before being sent to the back end
through the endpoint:

/booklist/search_value

The response will look like this (for /booklist/will_smith):

{
 "books": [
 {
 "subtitle": "The Musical",
 "listing_ids": [
 1,
 2
],
 "canonicalVolumeLink": "TRIPLElol",
 "title": "Moby Dick",
 "isbn": 1,
 "thumbnail": "http://blahBLAHblah",
 "smallThumbnail": "http:://blahblah",
 "authors": "Will Smith, Edgar Wright",
 "publishedDate": "1975",
 "categories": "Artificial Intelligence, Computer Science",
 "infoLink": "doublelol",
 "previewLink": "lolwhatisthis"
 }
]
}

This data can be used to construct the book objects.

Second, use listing_id s to perform the following GET request.

Important: This is where condition and price ordering comes into play. To
retrieve listings without any ordering:

/listings/listing,ids,separated,by,commas+

To retrieve listings ordering by lowest -> highest price:

/listings/listing,ids,separated,by,commas+price

To retrieve listings ordering by best -> worst condition:

/listings/listing,ids,separated,by,commas+condition

The response will look like this:

{
 "listings": [
 {
 "condition": "ehh",
 "status": "selling",
 "listing_id": 1,
 "google_tok": "1A",
 "price": 24.99,
 "timestamp": "2018-04-16 19:57:26.674665"
 },
 {
 "condition": "good",
 "status": "selling",
 "listing_id": 2,
 "google_tok": "1A",
 "price": 27.99,
 "timestamp": "2018-04-16 19:57:35.568820"
 }
],
 "google_tokens": [
 "1A"
]
}

Use this data to construct the listing objects.

Third, use google_tokens for a GET request to the following endpoint:

/userlist/google,tokens,separated,by,commas

The response will look like this:

{
 "users": [
 {
 "name": "Big Will",
 "listing_ids": [
 1,
 2
],
 "givenName": "Thick Ricky",
 "google_tok": "1A",
 "imageURL": "http://hello.com",
 "familyName": "Slick Nicky",
 "email": "ashleygw@whitman.edu"
 }
]
}

Again, the listing_id will be used to match books to listings to users.

6. Loading the Home Page

When a user first enters Whitman Books Online, they enter a home page with
listings ordered from most to least recent. To get most-recent listings:

/listings/home

This will return a JSON object similar to this:

{
 "listings": [
 {
 "condition": "good",
 "price": 27.99,
 "listing_id": 2,
 "status": "selling",
 "timestamp": "2018-04-16 19:57:35.568820"
 },
 {
 "condition": "ehh",
 "price": 24.99,
 "listing_id": 1,
 "status": "selling",
 "timestamp": "2018-04-16 19:57:26.674665"
 }
],
 "google_tokens": [
 "1A"
],
 "isbns": [
 1
]
}

Notice that the listings are in order from most to least recent. From here,
the user and book objects will be loaded separately. Use the data from those
queries to construct the full home page.

7. Deleting Objects

To delete a user, send a DELETE request to:

/user/google_token_of_user

To delete a listing, send a DELETE request to:

/listing/listing_id

I don’t forsee us wanting to remove book objects from the database (at least
for the MVP), but it works as you’d expect: Send a DELETE request to:

/book/isbn

API Autodoc

Auto Documentation of the Source Code

	book

	listing

	user

book

	
class api.book.Book

	Bases: flask_restful.Resource

The Book object handles API requests such as Get/Post/Delete.

	
none.

	

	
classmethod as_view(name, *class_args, **class_kwargs)

	Converts the class into an actual view function that can be used
with the routing system. Internally this generates a function on the
fly which will instantiate the View on each request and call
the dispatch_request() method on it.

The arguments passed to as_view() are forwarded to the
constructor of the class.

	
decorators = ()

	

	
delete(isbns)

	Deletes a book from the database.

	Parameters

	isbns (str) – The isbn of the book being deleted.

	Returns

	What happened with the delete call.

	Return type

	message

	
dispatch_request(*args, **kwargs)

	Subclasses have to override this method to implement the
actual view function code. This method is called with all
the arguments from the URL rule.

	
get(isbns)

	Get request, looking for all books based on isbns.

	Parameters

	isbns (str[]) – A list of isbns to query with.

	Returns

	A list of jsonified books.

	Return type

	json[]

	
method_decorators = []

	

	
methods = set(['POST', 'DELETE', 'GET'])

	

	
parser = <flask_restful.reqparse.RequestParser object>

	

	
post(isbns)

	Posts a book to the database.

	Parameters

	isbns (str) – The isbn of the book being posted.

	Returns

	What happened with the post call.

	Return type

	message

	
provide_automatic_options = None

	

	
representations = None

	

	
class api.book.BookList

	Bases: flask_restful.Resource

The BookList object handles the entire list of books in the database.

	
none.

	

	
classmethod as_view(name, *class_args, **class_kwargs)

	Converts the class into an actual view function that can be used
with the routing system. Internally this generates a function on the
fly which will instantiate the View on each request and call
the dispatch_request() method on it.

The arguments passed to as_view() are forwarded to the
constructor of the class.

	
decorators = ()

	

	
dispatch_request(*args, **kwargs)

	Subclasses have to override this method to implement the
actual view function code. This method is called with all
the arguments from the URL rule.

	
get(search)

	Gets a list of all books in database that match a search.

	Parameters

	search (str) – The string to search with.

	Returns

	A list of jsonified books that match the search result.

	Return type

	json[]

	
method_decorators = []

	

	
methods = set(['GET'])

	

	
provide_automatic_options = None

	

	
representations = None

	

	
class api.book.BookModel(title, subtitle, authors, isbn, categories, publishedDate, smallThumbnail, thumbnail, previewLink, infoLink, canonicalVolumeLink)

	Bases: sqlalchemy.ext.declarative.api.Model

	The BookModel object stores information about the book, as well as

	the listing objects that are associated with it.

	
title

	string – The title of the book.

	
subtitle

	string – The subtitle of the book.

	
authors

	string – The author/authors of the book.

	
isbn

	int – The isbn number for the book.

	
categories

	string – The categorise of the book.

	
puhlishedDate

	string – The published date of the book.

	
smallThumbnail

	string – A string referencing the small thumbnail of the book.

	
thumbnail

	string – A string referencing the thumbnail of the book.

	
previewLink

	string – A link to preview the book.

	
infoLink

	string – An info link for the book.

	
canonicalVolumeLink

	string – A canononical volume link for the book.
listings (Listing): The current listings of the book.

	
authors

	authors = relationship(
“AuthorModel”,
secondary=association_table1,
back_populates=’works’)

	
bare_json()

	Returns a jsonified book item, including a list of
listing ids.

	Parameters

	none. –

	Returns

	A json item representing a book.

	Return type

	json

	
book_json_w_listings()

	
	Returns a jsonified book item, including a list of

	jsonified listings.

	Parameters

	none. –

	Returns

	A json item representing a book.

	Return type

	json

	
book_json_wo_listings()

	Returns a jsonified book item, not including listings.

	Parameters

	none. –

	Returns

	A json item representing a book.

	Return type

	json

	
canonicalVolumeLink

	

	
categories

	

	
delete_from_db()

	Deletes the book from the database.

	Parameters

	none. –

	Returns

	none.

	
classmethod find_by_isbn(isbn)

	Finds a book by isbn number.

	Parameters

	isbn (str) – The isbn number we are searching for.

	Returns

	The book which matches the isbn.

	Return type

	Book

	
get_listings()

	Get a list of book listing jsons.

	Parameters

	none. –

	Returns

	A list of jsonified listings.

	Return type

	json[]

	
infoLink

	

	
isbn

	

	
listings

	

	
metadata = MetaData(bind=None)

	

	
previewLink

	

	
publishedDate

	

	
query_class

	alias of flask_sqlalchemy.BaseQuery

	
save_to_db()

	Saves the book to the database.

	Parameters

	none. –

	Returns

	A json item representing the book.

	Return type

	json

	
smallThumbnail

	

	
subtitle

	

	
thumbnail

	

	
title

	

listing

	
class api.listing.Listing

	Bases: flask_restful.Resource

The Listing object handles API requests such as Get/Post/Delete/Put.

	
none.

	

	
classmethod as_view(name, *class_args, **class_kwargs)

	Converts the class into an actual view function that can be used
with the routing system. Internally this generates a function on the
fly which will instantiate the View on each request and call
the dispatch_request() method on it.

The arguments passed to as_view() are forwarded to the
constructor of the class.

	
decorators = ()

	

	
delete(ids)

	Deletes a listing from the database.

	Parameters

	ids (str) – The id of the listing being deleted.

	Returns

	What happened with the delete call.

	Return type

	message

	
dispatch_request(*args, **kwargs)

	Subclasses have to override this method to implement the
actual view function code. This method is called with all
the arguments from the URL rule.

	
get(ids)

	Get request, looking for all listings matching an id in ids.

	Parameters

	ids (str[]) – A list of ids to query with.

	Returns

	A list of jsonified listings.

	Return type

	json[]

	
method_decorators = []

	

	
methods = set(['PUT', 'POST', 'DELETE', 'GET'])

	

	
parser = <flask_restful.reqparse.RequestParser object>

	

	
post(ids)

	Posts a listing to the database.

	Parameters

	ids (str) – The listing id of the listing being posted.

	Returns

	What happened with the post call.

	Return type

	message

	
provide_automatic_options = None

	

	
put(listing_id, price, condition, isbn, google_tok, status)

	Either posts listing to database, or updates it.

	Parameters

	
	listing_id (int) – An id to represent the listing, generated by the table.

	price (float) – The price of the listing.

	condition (str) – The condition of the listing.

	isbn (int) – The isbn of the listing.

	google_tok (str) – The google token of the user who made the posting.

	status (str) – The status of the listing.

	Returns

	A jsonified listing object representing what was put.

	Return type

	json

	
representations = None

	

	
class api.listing.ListingModel(price, condition, isbn, google_tok, status)

	Bases: sqlalchemy.ext.declarative.api.Model

The ListingModel object stores information about the listing, as well as
the book and user objects associated with it.

	
listing_id

	int – An id to represent the listing, generated by the table.

	
price

	float – The price of the listing.

	
condition

	string – The condition of the listing.

	
isbn

	int – The isbn of the listing.

	
book

	BookModel – The book being represented by the listing.

	
google_tok

	string – The google token of the user who made the posting.

	
user

	UserModel – The user who made the posting.

	
status

	string – The status of the listing.

	
timestamp

	int – The time the listing was posted.

	
bare_json()

	Returns a json object representing the listing.

	Parameters

	none. –

	Returns

	A jsonified listing.

	Return type

	json

	
book

	

	
bu_bare_json()

	Returns a json object representing the listing. Used when
going from books to users.

	Parameters

	none. –

	Returns

	A jsonified listing.

	Return type

	json

	
condition

	

	
delete_from_db()

	deletes the listing to the database.

	Parameters

	none. –

	Returns

	none.

	
classmethod find_by_isbn(isbn)

	Finds all listings matching an isbn.

	Parameters

	isbn (int) – The isbn to search with.

	Returns

	A list of listings.

	Return type

	ListingModel[]

	
classmethod find_by_listing_id(listing_id)

	Finds all listings matching a listing id.

	Parameters

	listing_id (int) – The listing id to search for.

	Returns

	A list of listings.

	Return type

	ListingModel[]

	
google_tok

	

	
isbn

	

	
listing_id

	

	
listing_json_w_book()

	Returns the listing jsonified, with a reference to the book being
represented.

	Parameters

	none. –

	Returns

	A jsonified listing.

	Return type

	json

	
listing_json_w_book_and_user()

	Returns the listing jsonified, with a reference to the book being
represented and the user who posted it.

	Parameters

	none. –

	Returns

	A jsonified listing.

	Return type

	json

	
listing_json_w_user()

	Returns the listing jsonified, with a reference to the user who posted.

	Parameters

	none. –

	Returns

	A jsonified listing.

	Return type

	json

	
metadata = MetaData(bind=None)

	

	
price

	

	
query_class

	alias of flask_sqlalchemy.BaseQuery

	
save_to_db()

	Saves the listing to the database.

	Parameters

	none. –

	Returns

	none.

	
status

	

	
timestamp

	

	
user

	

	
class api.listing.allListings

	Bases: flask_restful.Resource

The allListings object handles the entire list of listings in the database.

	
none.

	

	
classmethod as_view(name, *class_args, **class_kwargs)

	Converts the class into an actual view function that can be used
with the routing system. Internally this generates a function on the
fly which will instantiate the View on each request and call
the dispatch_request() method on it.

The arguments passed to as_view() are forwarded to the
constructor of the class.

	
decorators = ()

	

	
dispatch_request(*args, **kwargs)

	Subclasses have to override this method to implement the
actual view function code. This method is called with all
the arguments from the URL rule.

	
get(search)

	Gets a list of all listings in database that match a search.

	Parameters

	search (str[]) – A list of search terms defining what to search with.

	Returns

	A list of jsonified listings that match the search result.

	Return type

	json[]

	
method_decorators = []

	

	
methods = set(['GET'])

	

	
provide_automatic_options = None

	

	
representations = None

	

user

	
class api.user.User

	Bases: flask_restful.Resource

	
classmethod as_view(name, *class_args, **class_kwargs)

	Converts the class into an actual view function that can be used
with the routing system. Internally this generates a function on the
fly which will instantiate the View on each request and call
the dispatch_request() method on it.

The arguments passed to as_view() are forwarded to the
constructor of the class.

	
decorators = ()

	

	
delete(google_tok)

	Deletes a user from the database.

	Parameters

	google_tok (str) – The google token of the book being deleted.

	Returns

	What happened with the delete call.

	Return type

	message

	
dispatch_request(*args, **kwargs)

	Subclasses have to override this method to implement the
actual view function code. This method is called with all
the arguments from the URL rule.

	
get(google_tok)

	Get request, looking for all users with google token.

	Parameters

	google_tok (str[]) – A list of google tokens to query with.

	Returns

	A list of jsonified users.

	Return type

	json[]

	
method_decorators = []

	

	
methods = set(['POST', 'DELETE', 'GET'])

	

	
parser = <flask_restful.reqparse.RequestParser object>

	

	
post(google_tok)

	Posts a user to the database.

	Parameters

	google_tok (str) – The google token of the user being posted.

	Returns

	What happened with the post call.

	Return type

	message

	
provide_automatic_options = None

	

	
representations = None

	

	
class api.user.UserList

	Bases: flask_restful.Resource

The UserList object handles the entire list of users in the database.

	
none.

	

	
classmethod as_view(name, *class_args, **class_kwargs)

	Converts the class into an actual view function that can be used
with the routing system. Internally this generates a function on the
fly which will instantiate the View on each request and call
the dispatch_request() method on it.

The arguments passed to as_view() are forwarded to the
constructor of the class.

	
decorators = ()

	

	
dispatch_request(*args, **kwargs)

	Subclasses have to override this method to implement the
actual view function code. This method is called with all
the arguments from the URL rule.

	
get(tokens)

	Gets a list of all users in database that match any token from a list
of tokens..

	Parameters

	tokens (str[]) – A list of tokens to query with.

	Returns

	A list of jsonified users that match the tokens.

	Return type

	json[]

	
method_decorators = []

	

	
methods = set(['GET'])

	

	
provide_automatic_options = None

	

	
representations = None

	

	
class api.user.UserModel(google_tok, imageURL, email, name, givenName, familyName)

	Bases: sqlalchemy.ext.declarative.api.Model

The UserModel object stores information about the user, as well as
the listing objects that are associated with it.

	
google_tok

	string – The google token for the user.

	
imageURL

	string – The URL referencing the user’s image.

	
email

	string – The user’s email.

	
name

	string – The user’s first name.

	
givenName

	string – The user’s given name.

	
familyName

	string – The user’s last name.

	
listings

	ListingModel[] – All listings posted by the user,

	
bare_json()

	Returns a jsonified user item, with a list of listing ids.

	Parameters

	none. –

	Returns

	A json item representing the user.

	Return type

	json

	
delete_from_db()

	Deletes the user from the database.

	Parameters

	none. –

	Returns

	none.

	
email

	

	
familyName

	

	
classmethod find_by_email(email)

	Finds a user by email.

	Parameters

	email (str) – The email of the user we’re searching for.

	Returns

	The user who matches the email.

	Return type

	UserModel

	
classmethod find_by_google_tok(google_tok)

	Finds a user by google token.

	Parameters

	google_tok (str) – The google token of the user we’re looking for.

	Returns

	The user who matches the google token..

	Return type

	UserModel

	
get_listings()

	Get a list of book listing jsons posted by the user.

	Parameters

	none. –

	Returns

	A list of jsonified listings.

	Return type

	json[]

	
givenName

	

	
google_tok

	

	
imageURL

	

	
listings

	

	
metadata = MetaData(bind=None)

	

	
name

	

	
query_class

	alias of flask_sqlalchemy.BaseQuery

	
save_to_db()

	Saves the user to the database.

	Parameters

	none. –

	Returns

	A json item representing the user.

	Return type

	json

	
user_json_w_listings()

	Returns a jsonified user item, with a list of jsonified listings.

	Parameters

	none. –

	Returns

	A json item representing the user.

	Return type

	json

	
user_json_wo_listings()

	Returns a jsonified user item.

	Parameters

	none. –

	Returns

	A json item representing the user.

	Return type

	json

Analysis Document

Converted to Markdown by Tyler Phillips.
Converted to reStructuredText by Kirk Lange.

 Design Document

Design Document

Converted to reStructuredText by Isaiah Banta

Completed: 04/03/2018

Objective

As stated in our requirements document, the objective of this project is to develop a web application to facilitate the sale and/or exchange of textbooks between students at Whitman College. The minimum viable product (MVP) will contain at least the following four functionalities:

	Create and log in to a user account.

	List a book for sale.

	Search for books.

	Reserve a book.

See our requirements document for more details on each of these items.

Team

Organizational Chart

[image: ../_images/org_chart.png]

Front-End

User Stories

Seller
As a seller, I want to list my books so that I can sell them to people at Whitman with ease.

Buyer
As a buyer, I want to find books I need so that I can buy them easily from people at Whitman.

Use Case Diagram

[image: ../_images/uml_use_case.png]

User Interfaces

User Profile

[image: ../_images/wbo_userprofile_interface.png]
Login Page

[image: ../_images/wbo_login_interface.png]

Search

Initiating a Search
To initiate a search, the user will simply have to type in the name of the book they are looking for in the provided search bar, towards the top of the application.

Display of Search Results
Once the user has entered in what they are searching for, they will see a general listing corresponding to the book they are looking for. These results do not correspond to individual listings from sellers. Similar to Amazon’s marketplace, the user sees the general listing for the product they are looking for.

Listings
Once the user has selected a general listing, different sellers for that product will be shown.These correspond to individual entries by sellers.The user can proceed from those individual listings to communicate with the seller to organize a purchase.

Components

Our application will be designed using declarative, composable pieces called Components. Putting these components together will form the view of our application. These components will interact with our controller, allowing the user to have meaningful interactions with our Back-End, which will form the model.

Component List
<App />

<Page />

	A wrapper that displays content on the user’s screen.

<Login />

	Handles user login information to determine valid login credentials and give access to profile if valid.

<Navigation />

	Accesses components selected by the user.

<Profile />

	Displays user’s profile information.

<Market />

	Displays list of book listings currently for sale.

<SellBook />

	Processes user input of book being listed for sale, posting to Market’s page

<Search />

	Searches through listed books.

<BookFeed />

	List of books displayed on the Market’s page

<BookItem />

	Stores user input of books for sale contained in BookFeed’s list of books.

<BookPage />

	Page used to display BookItem information.

<ListingFeed />

	List of book listings for a specific book.

<ListingItem />

	Individual listing of a book with price and selling information attached.

<BuyBook />

	Handles user’s purchase of a book, processing payment and removing the book’s listing if paid for.

<ListingPage />

	Page used to display ListingItem information.

<SellerPage />

	Page pulled from a user profile to be viewed by other users that displays past sales history.

Back-End

Infrastructure

Server
We will be using two CentOS 7 servers with private networking. The app server will run the Node.js runtime, the application, and PM2, which is a process manager, and the web server will run Nginx which will work as a reverse proxy to the application. This server is also how users will access the application.

Databases

Frameworks
- Flask - to connect our API
- Flask SQLAlchemy - SQLAlchemy is an SQL toolkit for the Python language.

Information in the Database
- Users - All of the users of Whitman Books Online.
- Books - All of the current book listings on Whitman Books Online.

Method of Collection
- Users - Ideally retrieve user information using their Whitman ID, each user should have a unique ID.
- Books - User inputted information, collected while creating a listing.

Search Algorithms and Implementation

Fuzzy Search for Lookups & Extending in C
Database lookups will likely constitute the majority of our processing requirements. Thus, it is important to have a efficient way of matching an item in our database to a textbook a user is trying to access. Due to long textbook titles and the high probability that the average user won’t know the ISBN of the book they are looking for, we need a search method that doesn’t require the user know the exact name their target. We implement numerous fuzzy matching techniques to guess the exact entry from possible misspellings. The first is Levenshtein distance, getting an exact number of character distances from a pre-hashed list of possible spellings of all of our entries. We also implement a trigram search, breaking up each term into randomly sized substrings, and searching those through our database. We will not implement Metaphone or its derivatives as it is unlikely that a user will mistake a “p” for a “b” or like errors in typing the textbook they are looking for. For all of these to work with reasonable speed they should not be implemented in Python. We will use the subprocess module to spawn pre-compiled C++ programs for the obvious speed advantages. As the speed requirements of our program become more apparent (server selection) other implementations may need consideration. It is possible that the native library search functions will be adequate given enough processing power.

Classes

	ListingModel - includes “helper” functions for the Listing class

	Listing - objects have a listing id, price, user id, book id, condition (good, poor, fair), and status (sold/not sold)

	Listing class also supports get, put, post, and delete http requests, which interacts with the listing table in the database

	The Book and User classes follow the same framework …

API

List of API Functions
The API is being designed to accommodate all frontend needs and will update and retrieve data from the database. Currently, the items stored in the database are simple: just an item with a price. This will be changed to accommodate book objects, with the following corresponding database columns: title, author name, price, Listing ID, ISBN, Whitman class. The book objects will also be related to users in our user table:

	GET - returns all items in the database

	GET(item) - returns all information stored in the database about the item.

	POST(item) - This function adds an item to the database, does nothing if the item already exists in the database.

	PUT(item, price) - this will be the most commonly used API function. If the item does not exist in the database, the item gets added to the database along with the price. If the item exists in the database, the PUT function will update the item in the database with the current price. If the item already exists and has the same price, nothing will change.

	DELETE(item) - If an item exists in the database, the item gets removed from the database.

Similar functions will have to be implemented for the users.

The API also incorporates two functions for security via the JWT library:

	REGISTER - takes a username and password, saves it to the user table, and prints an error message if the user already exists or if there is a problem with the username or password.

	AUTHENTICATE - takes a valid username and password, and generates a security token that is required in order to call GET, POST, DELETE, etc.

Documentation

Documentation Plan

Sphinx
We are using the Sphinx Documentation Tool and an associated Read The Docs page that will be fleshed out as we build the application itself.

Data Flow
Following a team meeting, the respective team documenter will update the wiki with new tasks and a summary of the meeting itself. The following steps outline the process of adding information to the wiki This document is intended to suggest to documentation team members how to update the wiki with new tasks after a meeting.

	Take notes from the meeting
a. Convert notes to reStructuredText

	Make a new wiki page or add to the one already created in /docs/source/meeting/
a. Meeting note file names should be named like so YYYY-MM-DD.rst, for example, 2018-01-30.rst

	For each task in the meeting notes, create a new GitHub issue
a. Assign it to the person most responsible for it
b. Add as much detail as possible from the meeting notes and specify any additional people working on that ticket
c. Tag the issue with any relevant labels and add it to a milestone (if applicable)

	Notify Kyler about anything that would affect the big-picture schedule

Meeting Structure

[image: ../_images/meeting_structure.png]
Although the file structure has changed since the creation of the wiki flow chart below, the information on this image is still relevant in what each team’s documenter should have in mind when writing team meeting notes.

Wiki Organization

[image: ../_images/wiki_flow_chart.png]
Below are the team roles that were decided upon on January 30th.

Documentation Team Roles

	Person

	Responsibilities

	Jeremy

	team leader, wiki organizer

	Paul

	front-end documenter

	Ian

	back-end documenter

	Kirk

	documentation documenter (so meta), wiki manager

	Kyler

	schedule and issues manager

	Tyler

	special documents writer

Schedule

Master Schedule

As I continued working on the weekly schedules we (I) realized that people were more interested when large project issues were to be finished. I went around checking in with people on what sort of schedule they would like the most out of the Scheduling Manager. They really liked the Whitman College academic calendar. I made essentially the same schedule as the Whitman Academic Calendar and put in our own assignments and due dates. ~Kyler Dunn

Master Schedule

[image: ../_images/master_schedule.jpg]

	Date

	Assigned

	Wednesday, March 7th, 2018

	Design Phase Document Due

	Monday, March 26th, 2018

	Implementation Phase Begins

	Tuesday, April 17th, 2018

	MVP Due

	Tuesday, April 24th, 2018

	User Testing Begins

	Thursday, May 10th, 2018

	Estimated Final Rollout

Weekly Schedules

As the Schedule Manager for this project, I took it upon myself to sort of track what each group was doing over each week. This was to be used not only to aid in keeping people up to date but also for Mr. Banta to know where each team is at. The information tracked on the schedule would be used at overall project meetings so that everyone is aware where people are at during the design phase. ~ Kyler Dunn

Week Four

[image: ../_images/week_four_tasks.PNG]
Week Five

[image: ../_images/week_five_tasks.PNG]
Week Six

[image: ../_images/week_six_tasks.PNG]
Week Seven

[image: ../_images/week_seven_tasks.PNG]

Map of Requirements for Implementation

User Account

All users will be required to create an account with Whitman Books Online before they are allowed to buy/sell, create a listing, or view other listings.

All users will require a whitman email to create an account. This is so that users are confident that they are interacting with their peers, and as a safety precaution.

List a Book for Sale

Listing a book requires an account, and to be logged in.

The minimum values required to list a book are:

	ISBN

	This ISBN is used with a lookup service to gather data on:

	Title

	Author

	Edition

	etc.

	Price

	Condition

Search for Books

Searching for a book is a main feature of the Whitman Books Online service. A search bar will be prominently displayed on the home page and at the top of subpages, from which users can enter queries for the following attributes:

	Title

	Author

	Class

	Subject

The search will query the database and receive back a list of relevant books. The search will include an autocomplete feature to predict search terms as the user enters them. Once the list of results is displayed, users will be able to filter by Popularity, Subject, Date Added, and Price to further narrow down their search.

Reserve a Book

The process for reserving a book is as follows.

	Locate book in the database

	Choose copy you wish to buy

	Click “Buy” button, triggering the launch of mail client to contact seller

	Arrange to meet with seller outside of the app

	Book remains listed until seller closes the transaction

Security Plan

Security questions within the application will likely be questions about authentication and user storage. While users will be stored in the database, our plan is to not store any authentication details, largely to minimize our security risks. This will be made possible by using Google OAuth 2.0 to identify users to the application, allowing us to only store something like an email address with which we can correlate Google users to application users. This will also allow us to limit logins to people with valid Whitman accounts.

Security from an operations perspective will try to provide for threats from generic unscrupulous users. Treating the application as a black box, such security will have two primary components: security for the server from unauthorized users and security between the application and the user. The first will be provided for with standard server security measures: key-based ssh auth, a maximally locked-down firewall, etc. If we get the budget for the required EC2 instances, we could even host the frontend service on an edge server, leaving backend+DB on another instance locked down to the public. As for the security between the server and users, we will use HTTPS for all public connections, only allowing unencrypted HTTP URIs to redirect to their HTTPS counterparts. This should adequately provide security between the user and the application.

Testing

Front End

The Front-End will use the Jasmine testing framework to write and run our tests. We will focus our tests on the functions that interact with our Back-End and other services and will make sure all tests pass before opening pull requests to the master repo.

Jasmine.js

An example of the kind of test we would write.

describe("A suite is just a function", () => {
 var a;

 it("and so is a spec", () => {
 a = true;

 expect(a).toBe(true);
 });
});

Back End

Backend will use the unittest Python module to write unit tests. Just like the front end, we will ensure that all back-end tests pass before any merges into master.

 Ethical Concerns

Ethical Concerns

Written by Isaiah Banta.
Converted to Markdown by Kirk Lange.
Converted to reStructuredText by Kirk Lange.

 Helpful Links

Helpful Links

Cheat sheets, helpful guides, basic how-to’s, and other stuff

Written by Isaiah Banta.
Converted to reStructuredText by Kirk Lange.

 Meeting Notes Workflow

Meeting Notes Workflow

Based on whiteboard drawings by Ian Hawkins and Tyler Phillips on 2018-01-30.

This document is intended to suggest to documentation team members how to update the wiki with new tasks after a meeting.

	Take notes from a meeting

	Make a new docs page and specify its location and date. For example:

	meeting/backend/2018-02-14.rst

	meeting/general/2018-03-20.rst

	Convert your meeting notes to Markdown [https://gitlab.com/help/user/markdown] formatting, if they aren’t already.

	Edit: Now instead convert to reStructuredText [http://www.sphinx-doc.org/en/master/rest.html].

	For each task in the meeting notes, create a new ticket in the appropriate project and assign it to the person most responsible for it. Add as much detail as possible from the meeting notes and specify any additional people working on that ticket.

	For a proof of concept task, click the “Issues” button in the top right (on desktop) and add an issue to the ‘poc’ project.

	Notify Kyler about anything that would affect the big-picture schedule.

 Requirements Document

Requirements Document

The CS300 class will develop a web application to facilitate the sale and/or exchange of textbooks between students at Whitman College. This application will include, at minimum, the following features:

User account

A user will be able to create an account on the site that is linked to their Whitman email address. The application will allow users to login to and logout of this account. Users will not be able to create listings or view other users’ contact information without creating an account. This will limit these permissions to Whitman-affiliated users only, for security and privacy reasons.

List a book for sale

Once a user has created an account, they will be able to list a book for sale. Book listings will be linked to the seller’s user account and will include the following pieces of information:
- The title of the book
- The edition of the book
- The book’s ISBN number
- The book’s general subject matter
- The sale price
- A picture of the book, if the seller chooses to provide one, and
- The condition of the book (level of wear and tear, presence of highlights and underlining, etc.)

Search for books

Any user will be able to search the collection of books that have been listed. Only users that have created accounts will be able to view the name of the seller of a book. Book listings will be searchable by title, ISBN number or subject matter.

Reserve a book

Users who have created an account will be able to reserve a book by clicking a reserve button on the book’s listing page. This will send an email notification to the seller’s Whitman email address notifying them that someone has reserved their book and including the Whitman email address of the user who has reserved it. Once the reserve button has been clicked, the book listing will no longer appear publicly. The listing will remain in the application’s database until the seller indicates that the book has been sold. The buyer and the seller will both have the ability to unreserve the book in case of a mistake or in case the sale does not go through, in which case it will reappear publicly. It will then be up to the seller to contact the buyer via email, outside of this application’s interface, to arrange the sale. The application will recommend that users meet in a public location on campus to complete the sale.

Note: Further consideration of the time lapse between a book taken out of circulation and an incomplete sale to be made in the future.

 Meeting Notes

Meeting Notes

General Meeting Notes:

	Jan 23 Tue - Initial Project Vote

	Jan 24 Wed - Minimum Viable Product

	Jan 30 Tue - Requirements Brainstorming

	Jan 31 Wed - Ethical Implications

	Feb 06 Tue - Planning and Workshopping

	Feb 20 Tue - Wrapping Up Analysis

	Feb 27 Tue - GitHub Migration

	Apr 03 Tue - Funding Update

Front-End Meeting Notes:

	Jan 26 Fri - UI Design

	Jan 30 Tue - Front-End Tools and Design

	Feb 2 Fri - Overall Architecture

	Feb 05 Mon - Details and Desired Functionality

	Feb 06 Tue - Tool Tutorials

	Feb 09 Fri - Random

Back-End Meeting Notes:

	Feb 06 Tue - Team Organization and OAuth

	Feb 28 Wed - API Basics

	Mar 27 Tue - API Endpoints

	Apr 03 Tue - API Meeting

Documentation Meeting Notes:

	Jan 30 Tue - Task Management

	Feb 05 Mon - Take Me To Your Leader

	Feb 06 Tue - Analysis Document Outline

	Feb 27 Tue - New Documentation Tools

	Apr 11 Wed - Documentation Tasks

 Jan 23 Tue - Initial Project Vote

Jan 23 Tue - Initial Project Vote

Class voted for the app proposal Whitman Books Online. Original description:

An app that lets Whitman students buy and sell textbooks from other Whitman
students. Currently, there is no good way to buy used textbooks from other
students. If there was a simple app to search by book, then students would not
be forced to use the bookstore. Students could also get more money back for
their textbooks, and could also purchase them for cheaper.

 Jan 24 Wed - Minimum Viable Product

Jan 24 Wed - Minimum Viable Product

Components

	textbook directory

	textbook listing

	user profile (barebones, Whitman email)

	item profile

	categories list/page

Actions

	add/remove listings

	sort by x

	compare

	search

	login/logout via Google Authentication

	buy item / agree to meet with seller

	search/filter

Other

	transactions occur manually between individuals (not virtually, at first)

 Jan 30 Tue - Requirements Brainstorming

Jan 30 Tue - Requirements Brainstorming

Written by Isaiah Banta
Converted to Markdown by Ian Hawkins
Converted to reStructuredText by Kirk Lange

 Jan 31 Wed - Ethical Implications

Jan 31 Wed - Ethical Implications

Considered possible ethical implications of this app. The relevant parts of
Jeremy’s report after talking with the bookstore went as follows:

I talked to Janice King at the bookstore. […] She definitely was suspicious
of me though, and said that since she doesn’t know what our project is, she
wants to be careful about giving information that “slits her own throat”, as
she put it. Yikes. She also talked at length about being one of the last
independent bookstores in the northwest, etc. She asked for details on the
project, and I deflected saying we were all working as a group of 20+ people so
we were still figuring that out. She also wanted to see the final project for
the purposes of “being transparent both ways”, so that’s a problem. I guess the
bookstore would have found out one way or another.

After discussion on Slack and in class, we decided to continue on the project
anyway, because capitalism.

 Feb 06 Tue - Planning and Workshopping

Feb 06 Tue - Planning and Workshopping

	Back-end OAuth discussion (see back-end meeting notes)

	Sub-team re-organization

	Workshop held on Git and GitLab

 Feb 20 Tue - Wrapping Up Analysis

Feb 20 Tue - Wrapping Up Analysis

	The importance of attendance should be brought up to the whole group, especially that of team leaders.

	Team leaders should consider making a team planner so in case of absence/sick-day their team is not completely lost as to what to do.

	Anyone who will not show up to lab should communicate via Slack.

	We will begin attaching deadlines to our milestones/issues in the hopes of encouraging stronger attendance and productivity.

	We will be using Sphinx [http://www.sphinx-doc.org/en/master/] for code documentation.

	Analysis document is coming along well. We mainly just need more info from the front-end.

	Documentation team needs a dedicated documenter (i.e. someone to write notes like these). Kirk Lange has taken on this role.

	Who watches the watchmen?

 Feb 27 Tue - GitHub Migration

Feb 27 Tue - GitHub Migration

GitHub

	Might as well make the repo public?

	It’s going public eventually anyway

Migration Process

	Create GitHub repo

	Setup Sphinx

	Migrate existing content to GitHub (such as converting our current wiki to .rst)

	Link ReadTheDocs to the GitHub repo

 Apr 03 Tue - Funding Update

Apr 03 Tue - Funding Update

Meeting with Daren Mooko*
*VP for Student Affairs and Dean of Students
	Asked for either hosting on Whitman’s servers or money to get an AWS instance

	Questions Mooko asked:

	How we know this app does not already exist?

	What will it do that Whitman’s buy-back system doesn’t do?

	Vouched for the Whitman bookstore because it’s non-profit

	Need to negotiate with bookstore if want to gain access to Whitman servers

	Will meet with and solicit funding from Finance Department

 Jan 26 Fri - UI Design

Jan 26 Fri - UI Design

Model

	Database of books/users

	Constructed by backend (not sure which language yet)

	Holds all info

View(UI)

	Constructed using HTML/CSS

	Display textbooks on sale, Craigslist style organization

	Projecting what is given by Controller

Controller (UX)

	Any change to view happens in controller

	Get data from Model, make stuff, give to View

	Everything must pass through Controller

GOAL: Keep Model, View and Controller files distinct from one another

	Go over CSS/Javascript before lab on Tuesday

	Model will be largely handled by backend

	View and Controller almost entirely frontend

Lots of communication necessary with backend to keep View/Controller in line with Model

	Compromise, meet halfway, flexbility is key

 Jan 30 Tue - Front-End Tools and Design

Jan 30 Tue - Front-End Tools and Design

Redux = Library to use on top of React

	Will act as Controller

	Changes will be reflected in state and then reflected back in app

	Complicated so we’ll gov over it more later

Consider doing testing, dependent on scope of project

	If time allows, should be doable

	Could use Jasmine framework

	Documentation team writing testing?

Back-end requests logging, would be helpful

	Running through the app

	User prompted to login by start page

	User tries to login

	Whitman email = controller presents view for app

	Non-Whitman email = controller presents failure page

	List of books in app

	Each book has drop own showing all sellers of book/all copies on sale

	Drop down or dedicated page? Disagreement for now

 Feb 2 Fri - Overall Architecture

Feb 2 Fri - Overall Architecture

	Develop website first then port to mobile app

	Start with list view on site

	Add grids afterwards?

	System like Amazon or Ebay?

	Amazon = Click on book, pulls up list of sellers

	Ebay = All entries that match search listed separately

	Clicking on an entry should take you to a different page

	Want to be able to search for a book and see cheapest option

	Sort by option in sidebar

 Feb 05 Mon - Details and Desired Functionality

Feb 05 Mon - Details and Desired Functionality

	Listings showing title of book and price range

	Selecting listing creates dropdown

	Dropdown contains list of sellers ranked price/book condition

	Disagreement on dropdown or new page

	What are the advantages of dropdown vs. new page? Vice versa?

	Book condition, select from list of preset conditions

	Can add additional description of condition, click on “More” to see

	Can upload any book, not only Whitman books

	Add ISBN number when uploading new book?

	Seller’s persepctive: Adding books to sell

	Adding by title

	Adding by ISBN

	Necessary to be accurate on editions of textbooks

	Could prompt user to ask to check ISBN

	Original upload of book could force adding ISBN

	SUbsequent adds would ask to check if ISBN is same

	Ideally, would be able to add by either

	Pulling info from Amazon?

	How do people know hoe much to sell for?

	Free market will decide

	Option of adding picture(s) of book, not required to upload

 Feb 06 Tue - Tool Tutorials

Feb 06 Tue - Tool Tutorials

	Start writing code today?

	Start with basics of web development

	Code Academy links in front-end webpage

	Get proper software installed on every ront-end member’s laptop

	Time spent working with Code Academy to familiarize with languages

	FlyChecker to maintain style guidelines

	Automatically corrects coding style based on presets

	Could be helpful in maintaining consistent coding style

	React Tutorial

	Public folder contains index.html file

	Template for app

	Use ReadMe to understand create-react-app

	Package.json

	Describes basic configuration of app (Name, version etc.)

	Changes to React environment create immediate changes to webpage

	Importing functions similarly to Python

	Define components as class containing attributes and methods

	Almost every component will have render() method

	Sizing and Formatting

	Use px for elements you want to keep the same size and % for elements you want to scale with size of the page

	% is based on space given, not on true size of page

	Inspecting a webpage: Ctrl + Shift + I (learn this shortcut)

	Making a component for Login page

	Renders login button on screen

	Inserted into render() method of app

	Login function sends alert for logging in when clicked (temporary)

 Feb 09 Fri - Random

Feb 09 Fri - Random

	Black Pearl or USS Enterprise?

	Enterprise: No drinking, sterile environment, but SPACE

	Black Pearl: Lots of drinking, swashbuckling (great), grog (GREAT), scurvy…

	Nikhil cut me from the team

	Prioritize finishing React tutorial

 Feb 06 Tue - Team Organization and OAuth

Feb 06 Tue - Team Organization and OAuth

Making sure everyone is on the same page; Affirming what backend is and does.

Backend has all their current tasks put into issues. Jesse will make more tickets for his own tasks.

George has a paid server option that sounds good.

Jesse will probably take over Raj’s ticket of determining what API is suitable for this project. Flask is the most likely pick.

We have access to online Flask lessons through Udemy, as discussed in Slack.

OAuth

Do we want OAuth to send the token directly? That’s a question for later, but Jesse thinks the token should be sent to us along with the full name and email address.

Since this is looking more like a frontend matter, Jesse will talk to Richie about passing authentication responsibility to frontend and the OAuth PoC ticket will be closed.

George has been using Flask for part of the OAuth PoC.

 Feb 28 Wed - API Basics

Feb 28 Wed - API Basics

Oauth being handled by frontend, because of how Google handles its Auth stuff

Frontend/API Actions

	login

	create/update/remove user profile

	status, object for create/update

	status for remove

	get user profile

	create listing

	insert listing record

	create/update/remove listing:

	status, object for create or update

	status for remove

	search/filter:

	listing (fuzzy search?)

	get user

	get listings

Database Structure

	user profile:

	name

	email

	last login date/time

	listings:

	seller, price

Anytime you want to add something it would be a put request

Richie wants to update data rather than add whenever possible

Designing super basic api for now, specifics will depend heavily on basic structure, so no point getting to specifics now

 Mar 27 Tue - API Endpoints

Mar 27 Tue - API Endpoints

Owen, Sean, and Richie

Small meeting to talk about the functions

Richie brings up the design phase document to show the diagram.

Richie wants a function for each endpoint. For example, there will be an
endpoint called /users and it will contain key-value pairs where the key is a
user ID and the values are data about the user. There may be 2 functions for
/books so that they can be accessed by ID or keywords.

Endpoints:

Think of the endpoints as their own classes.

Here’s a representation of a possible database. There may be some bits missing,
for example, a book has more information than just title, author, and ID.

	/users

	$user_id

	name

	email

	list of listing IDs for listings created by this user

	/books

	$book_id, perhaps ISBN

	title

	author

	list of listing IDs for listings for this book

	$listing_id for each listing

	/listings

	$listing_id <– this is one particular listing

	price

	condition

	book_id

	user_id

	status

Frontend will send a request with either a query or some number of book IDs.
When they send a query, backend needs to do some kind of search.
When they send book IDs, just look up those books.

Things that frontend needs from the API:

In any of the “get” actions above, provide all information about the object
being requested.

 Apr 03 Tue - API Meeting

Apr 03 Tue - API Meeting

Sean and Owen talked to Richie [reference the notes for this meeting] and they
want to get everyone caught up on what they know.

By the end of this meeting, everyone not working on something else will have

In Flask, you declare a port number and an endpoint like /books.

The endpoints have methods get, put, and delete. This will look like
/book(ID) where ID is a unique identifier for the book. Books can also be
accessed with a search term.

There will be 3 Python modules: book.py, listing.py, and user.py, to be
divided among backend team members. A class will be written for each and then
the Flask will be implemented afterward.

 Jan 30 Tue - Task Management

Jan 30 Tue - Task Management

Tasks will be assigned to individual/multiple people will be handled via issues

Roles as of Now

	Person

	Responsibilities

	Jeremy

	wiki organizer, front-end secondary

	Paul

	front-end primary

	Ian

	back-end primary

	Kirk

	documentation team documenter (so meta), doc binder, wiki manager

	Kyler

	scheduler/task manager, back-end secondary

	Tyler

	document writer

 Feb 05 Mon - Take Me To Your Leader

Feb 05 Mon - Take Me To Your Leader

	Jeremy Davis becomes documentation leader

	roles: vision, setting goals, documenting team leader meetings

	Nelson Hayes (back-end) drops the class

 Feb 06 Tue - Analysis Document Outline

Feb 06 Tue - Analysis Document Outline

Jeremy Davis’s notes from talking to Prof. Klein about the analysis document

Risk analysis

Risk of not getting project done on time and what can be done to mitigate that risk (include timeline for example)
Risk of litigation, talk to Whitman legal counsel
Personnel risks such as bad relationship with bookstore

Tools

Analysis of software tools to be used to accomplish project such as MySQL for database, html/css and Javascript and react for frontend, etc.
Doxygen? All tools we will be using
Make sure all the interfacing between languages is doable

Backend

python with flask microframework
SQLALCHEMY Object-relational mapper for use with MYSQL databate
Anything we have to buy? Domain name, server hardware?
Time analysis, do we have enough time to complete everything?

Marketing Strategy

Catchier name?
Survey of student to see if they would even be interested?
Design of ui to make it salable

Other

Software quality assurance analysis, such as what we do to make sure code is up to par, anticipating possible problems to mitigate them.
Anticipating future sub-divisions of teams
Different organization charts of sub-teams, more up to date for exactly what everyone is working on

 Feb 27 Tue - New Documentation Tools

Feb 27 Tue - New Documentation Tools

	For sure using Sphinx

	Probably using readthedocs.org, especially if the repo is public

	Look into ReadTheDocs private documentation

	Link to ReadTheDocs in the top directory’s README.md

 Apr 11 Wed - Documentation Tasks

Apr 11 Wed - Documentation Tasks

	After doc leader feedback survey, Jeremy will now take a more hands-on approach

	Tentative deadline for user tutorials is April 20th

	JavaScript autodoc work-around
* Use JS’ autodoc -> html
* Move that html into an rst file
* Have that rst file be an html block

	Continue to reorganize meeting notes into their seperate teams

 Privacy Policy

Privacy Policy

This privacy policy discloses the privacy practices of “whitmanbooks.online” A.K.A. “whitmanbooksonline.com”.
This privacy policy solely applies to information collected by these domains.

	It will notify you of the following:

	
	What personally identifiable information is collected from you through the website, how it is used and with whom it may be shared.

	The security procedures in place to protect the misuse of your information.

	How you can correct any inaccuracies in the information.

Information Collection, Use, and Sharing

The information that whitmanbooks.online gathers is minimal because we use Google Authentication to verify that all users have a whitman.edu gmail address.

	Here is what we have access to:

	
	your IP address

	the date and time

	your browser

	your operating system

	your listed books

	basic information related to your google account:

	your name

	your profile picture

	your email address that you use to login

Here is what we store in our database:
- your google token associated with your Google+ profile (this is publicly available information)
- any books you are selling, their price, and their condition

All of this information is used to generate your profile and connect your listings to your whitmanbooks.online profile.
Additionally, your email will be attached to the books you are selling for ease of contact.

Your Access and Control of Your Information

At any point you may contact us via the email address or phone number given below for any of the following:
- see all data we have related to your account
- have us delete any data related to your account
- express any concerns you may have about our use of your data

Security

Our website protects all information by encrypting and transmitting it in a secure way.
You can verify this by checking the left hand side of your URL bar and noticing the green padlock and ‘Secure’ text denoting a secure https connection.

Our use of AWS and Google Auth also allows us to take advantage of the security of two of the largest tech companies in existence.
This means that your data is more likely to be kept secure.

Notification of Modification

Should this privacy policy change, all users will be notified of its change through email or our website.

If you feel that we are not abiding by this privacy policy, please contact us immediately via phone or email: (619) 495-2111, bantaib@whitman.edu .

 Python Module Index

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 api	

 	
 	
 api.book	

 	
 	
 api.listing	

 	
 	
 api.user	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U

A

 	
 	allListings (class in api.listing)

 	api.book (module)

 	api.listing (module)

 	api.user (module)

 	as_view() (api.book.Book class method)

 	(api.book.BookList class method)

 	(api.listing.Listing class method)

 	(api.listing.allListings class method)

 	(api.user.User class method)

 	(api.user.UserList class method)

 	
 	authors (api.book.BookModel attribute), [1]

B

 	
 	bare_json() (api.book.BookModel method)

 	(api.listing.ListingModel method)

 	(api.user.UserModel method)

 	book (api.listing.ListingModel attribute), [1]

 	Book (class in api.book)

 	
 	book_json_w_listings() (api.book.BookModel method)

 	book_json_wo_listings() (api.book.BookModel method)

 	BookList (class in api.book)

 	BookModel (class in api.book)

 	bu_bare_json() (api.listing.ListingModel method)

C

 	
 	canonicalVolumeLink (api.book.BookModel attribute), [1]

 	
 	categories (api.book.BookModel attribute), [1]

 	condition (api.listing.ListingModel attribute), [1]

D

 	
 	decorators (api.book.Book attribute)

 	(api.book.BookList attribute)

 	(api.listing.Listing attribute)

 	(api.listing.allListings attribute)

 	(api.user.User attribute)

 	(api.user.UserList attribute)

 	delete() (api.book.Book method)

 	(api.listing.Listing method)

 	(api.user.User method)

 	
 	delete_from_db() (api.book.BookModel method)

 	(api.listing.ListingModel method)

 	(api.user.UserModel method)

 	dispatch_request() (api.book.Book method)

 	(api.book.BookList method)

 	(api.listing.Listing method)

 	(api.listing.allListings method)

 	(api.user.User method)

 	(api.user.UserList method)

E

 	
 	email (api.user.UserModel attribute), [1]

F

 	
 	familyName (api.user.UserModel attribute), [1]

 	find_by_email() (api.user.UserModel class method)

 	find_by_google_tok() (api.user.UserModel class method)

 	
 	find_by_isbn() (api.book.BookModel class method)

 	(api.listing.ListingModel class method)

 	find_by_listing_id() (api.listing.ListingModel class method)

G

 	
 	get() (api.book.Book method)

 	(api.book.BookList method)

 	(api.listing.Listing method)

 	(api.listing.allListings method)

 	(api.user.User method)

 	(api.user.UserList method)

 	
 	get_listings() (api.book.BookModel method)

 	(api.user.UserModel method)

 	givenName (api.user.UserModel attribute), [1]

 	google_tok (api.listing.ListingModel attribute), [1]

 	(api.user.UserModel attribute), [1]

I

 	
 	imageURL (api.user.UserModel attribute), [1]

 	infoLink (api.book.BookModel attribute), [1]

 	
 	isbn (api.book.BookModel attribute), [1]

 	(api.listing.ListingModel attribute), [1]

L

 	
 	Listing (class in api.listing)

 	listing_id (api.listing.ListingModel attribute), [1]

 	listing_json_w_book() (api.listing.ListingModel method)

 	listing_json_w_book_and_user() (api.listing.ListingModel method)

 	
 	listing_json_w_user() (api.listing.ListingModel method)

 	ListingModel (class in api.listing)

 	listings (api.book.BookModel attribute)

 	(api.user.UserModel attribute), [1]

M

 	
 	metadata (api.book.BookModel attribute)

 	(api.listing.ListingModel attribute)

 	(api.user.UserModel attribute)

 	method_decorators (api.book.Book attribute)

 	(api.book.BookList attribute)

 	(api.listing.Listing attribute)

 	(api.listing.allListings attribute)

 	(api.user.User attribute)

 	(api.user.UserList attribute)

 	
 	methods (api.book.Book attribute)

 	(api.book.BookList attribute)

 	(api.listing.Listing attribute)

 	(api.listing.allListings attribute)

 	(api.user.User attribute)

 	(api.user.UserList attribute)

N

 	
 	name (api.user.UserModel attribute), [1]

P

 	
 	parser (api.book.Book attribute)

 	(api.listing.Listing attribute)

 	(api.user.User attribute)

 	post() (api.book.Book method)

 	(api.listing.Listing method)

 	(api.user.User method)

 	previewLink (api.book.BookModel attribute), [1]

 	price (api.listing.ListingModel attribute), [1]

 	
 	provide_automatic_options (api.book.Book attribute)

 	(api.book.BookList attribute)

 	(api.listing.Listing attribute)

 	(api.listing.allListings attribute)

 	(api.user.User attribute)

 	(api.user.UserList attribute)

 	publishedDate (api.book.BookModel attribute)

 	puhlishedDate (api.book.BookModel attribute)

 	put() (api.listing.Listing method)

Q

 	
 	query_class (api.book.BookModel attribute)

 	(api.listing.ListingModel attribute)

 	(api.user.UserModel attribute)

R

 	
 	representations (api.book.Book attribute)

 	(api.book.BookList attribute)

 	(api.listing.Listing attribute)

 	(api.listing.allListings attribute)

 	(api.user.User attribute)

 	(api.user.UserList attribute)

S

 	
 	save_to_db() (api.book.BookModel method)

 	(api.listing.ListingModel method)

 	(api.user.UserModel method)

 	
 	smallThumbnail (api.book.BookModel attribute), [1]

 	status (api.listing.ListingModel attribute), [1]

 	subtitle (api.book.BookModel attribute), [1]

T

 	
 	thumbnail (api.book.BookModel attribute), [1]

 	
 	timestamp (api.listing.ListingModel attribute), [1]

 	title (api.book.BookModel attribute), [1]

U

 	
 	user (api.listing.ListingModel attribute), [1]

 	User (class in api.user)

 	user_json_w_listings() (api.user.UserModel method)

 	
 	user_json_wo_listings() (api.user.UserModel method)

 	UserList (class in api.user)

 	UserModel (class in api.user)

_images/sell_page-inputting_price.png
Sell your book:

1111111111 CONFIRM

BookData Dummy Title for Series Checkin
JAME | | G. Minasean ~
R

Publisher: Psychology 2.0 Books
Published Date: 2001-10This famous work is a textbook that emphasizes the conceptual and historical continuity of

analytic function theory. The second volume broadens from a textbook to a textbook-treatise, covering the “canonical
topics (including elliptic functions, entire and meromorphic functions, as well asconformal mapping, etc.) and other
topics nearer the expanding frontier of analytic function theory. In the latter category are the chapters on majorization

and on functions holomorphic in a half-plane.

Poor

Input your desired price:

$20 SUBMIT

Profile Market Sell

_images/sell_page-isbn_prompt.png
Sell your book:

MMMMMM

_images/profile_page-no_listings.png
0 Paul Milloy

milloypr@whitman.edu

Your Listings

Books you are selling go here.

&) 8

Profile Market Sell

_images/sell_page-inputting_isbn.png
Sell your book:

Tl 1aaT CONFIRM

BookData Dummy Title for Series Checkin
L. G. Minasean »

Publisher: Psychology 2.0 Books
Published Date: 2001-10This famous work is a textbook that emphasizes the conceptual and historical continuity of

analytic function theory. The second volume broadens from a textbook to a textbook-treatise, covering the ““canonical
topics (including elliptic functions, entire and meromorphic functions, as well asconformal mapping, etc.) and other
topics nearer the expanding frontier of analytic function theory. In the latter category are the chapters on majorization

and on functions holomorphic in a half-plane.

_images/wbo_login_interface.png
Whitman Books Online

_images/wbo_userprofile_interface.png
Your Listi

To Kill a Mockingbird

Harper Lee

$100, Good

$120, Excellent

Godel, Escher, Bach

Douglas Hofstadter

$65, Okay

Contact:worthirj@whitman.edu

Q) woor

_images/ui_drawings.jpg
\/\H\LY‘N’\'\

Books

Online_ (/a

Obje b- @r-bl‘rtd cwi
C!ﬂSs (6-\ Sﬂawﬁ& Ev,% ﬂf@/\
Stephin R o tdw

-
ne br:&qﬂva} GK

Séhoe

b 0 Selle r¢
';En(““”‘tﬁ % 8~ z-b
e - U Ser
| Qlject-0rieqted ovd.. . Ic. uplaxded
Clossi o) . Soffware, ., ———— ¥
th | Schal 3 il ‘)C-ﬂfo‘}
2 b20-0o
shcle ?\'oh
13 koc)[(_
(2 copies) 330-Go
A e AR) ke o
" And'L Sel) S ed $ Clicle
!"(j \(Ou(’S O“‘-Grs
o Sel
all baks
with Hig

heoy

o ————— e

Notes: \ Notes:
el ool “Sell Yoo Mo itas Phalice
¢ Moot Prolan~ [(# oF saley 70t SLftewm W alish
2 Peree] this choguler Yool
‘C(h.’)ﬁ f Field s a\/‘“fnol; £:lld ™M
> Jubiech ‘
; 3] Freds', Tide SAGH s SR datie
| fhate
1)

> 'Vc? /o-»afscafg olDF"vq, Aﬁo S/ay.s I D?'Of’»tfai# r/:n S..“?};U}.y‘

Notes:

iy +
ot S R e

O\nstd - Orienbd g4 et
Classtea) St e ry F-"‘3 g
Stefhanm R Semch .5 T Bl e Ser }

3 ‘-’YF'L/S " .a°(+ \-1 P(‘tg \/

) ¥i86a @ ar

‘ \c-»a.-w in Wm o

| & Selle Riley a7y (blu)

i o b PO e New, (gren
b 3 $45.99 : \C ele

Cond 0w’ VIO \‘SV\{ tolan

Ml St Bl C"('(

| §e0.00
Condibpn: NEiw | BVY

B

Wiler ¢ Sonwn

OH\(‘/‘ Sort
* Conditro

0 pt 0n

g

BUY b\\'\"o"\ e h\b-r' \a\md\u \

vl ape w| adden pilk gg;maw palled

M 0f anllmaltall

|
%
|
evma) be suUlte \afbe ('onp""‘?\rf\"\\
3

ettt oo oo Aottt et e e nsos et At e e

_images/uml_use_case.png
Student

q

Seller

Buyer

_4

‘OAuth sign-in

Whitman Books Online

Cancel a
reservation

Search for a
book

Arrange book
sale

Add or edita
book listing

_images/wiki_flow_chart.png
Frontend Page Frontend Mesting Notes Page

*Everyone on the frontend *“Links to notes by month?
week?*

team
*Paul, frontend documenter'__L———"""] *The page to which each
meeting note will be uploaded

Meeting Notes Page’
“Listof Frontend in chronological order”

Responsibilies’
*Description of Frontend
Design
Pretty Pictures of UI
*General theory behind design
decisions*
*Frontend-specificimeline?”

Backend Page
Backend Meeting Notes Page
*Everyone on the backend
team* *Links o notes by month?

week?*

*lan, backend documenter”
L5 “Thepage towhich each

Veeting Notes Page.
“Ustof backend meeting noe wil be uploaded
Responsivites* inchronologica oder”
WIKIHOME PAGE
/ *Description of Backend
Design’
Frontend P
fontend Page “Pretly Pictures of Backend
Backend Page Design*
“Generaltheorybefind design
decigions'
Documeniaton P
ocumentation Page *Backend-specific imeline?*
“BriefDescripionofhe project”
“Maybe the diagram of everyane on
ezchtoam?” Documentaton Page Socumentaton Hecting Noes
“Anything Else?* “Everyone on the documentation Page
team .
“documentaion meetng | | "Hks o etes oy montn?
documenter?”

“The page o which each

Mecting Noos Page? mesting note il b Uploaded
Reaponeiiltos: In chronologieal order
“Descripion of documentaton ikt we have onovgh
workfon”

“Prety Picures ol worklow” documenation mesiings we

“Generalheory bt workiow | Coulamake hispage,

decisions*

*Documentation-specific bother W’“:E’g":e”"g nofes

timeline?”

_static/ajax-loader.gif

_images/master_schedule.jpg
FEBRUARY MARCH

record permitted thru February 23 Drop with 'W' grade permitted thru April 6
Week 4 Week 5 Week 6 Week 7 Week 8 Spring Break Week 9
FIM T WThFIMT WThFIMT WThF M TWThFIMT WTEFIMT WThFIMT WTF M T W Th
2] 5] 6] 7] 8] 9] 12] 13] 14| 15 19] 20j2 2] 23] 26]27] 28] 1 6] 7] 8] 9] 12| 13| 14] 15] 16] 19] 20| 21| 22| 23] 26| 27| 28| 29

[

Design Phase Due

Implementation
Phase Begins

[] APRIL
| 0 1 0000 [JraPreregistraton | 00000]

[| Week10 | Week11 | Week12 | Week13 | Week14 | Week15 |
[F [M T W ThF [V T WhF[MW T WIhFIM T WThF[WwT WTThFIW T WThF [samMT
[30] 2] 3] 4] 5[, e[of o[1] 12[13[16] 17]18] 19]\20] 23] .24 25] 26] 27] 30[1] 2] 3] 4] 7] 8] o[o 1] 12] 14] /15]

MVP Due User Testing Final Rollout

_images/meeting_structure.png
15
minutes

Meeting Structure for Tuesday Labs

Lab start

Mesting Notes
Start

Large group discussion,

questions, updates

Convene

Split Into Teams

Mesting with team leader

Define new milestones

Work on tasks

Back-end

Check milestone progresses

Check milestone progress

Redefine criteria

_images/market_page-contacting_seller.png
Exchange

Gadel, ESCher, Bach Douglas R. Hofstadter

$20, Good
Richard Farman, farmanrl@whitman.edu

CONTACT SELLER

Great! Send them an email ~

farmanrl@whitman.edu B copy
) Herman Melville
Hi Richard, I'd like to buy your book E COPY
at-h'ér'F;t-a“szon, otherperson@whitman.edu
CONTACT SELLER
(&) 8

Profile Market Sell

_images/market_page.png
Exchange

Godel, Escher, Bach

$20, Good
Richard Farman, farmanrl@whitman.edu

CONTACT SELLER

$30, Excellent
Richard Farman, farmanrl@whitman.edu

CONTACT SELLER

Moby Dick; Or, the Whale

$15, Okay
Other Person, otherperson@whitman.edu

CONTACT SELLER

@) [=

Profile Market

Douglas R. Hofstadter

Sell

Herman Melville

_images/org_chart.png
George Ashley

Isaiah Banta

Nelson Hayes

Owen Davis-Bower

Pablo Fernandez
Orozco

Rajesh Narayan

Richard Farmen

nav.xhtml

 Table of Contents

 		
 Whitman Books Online Documentation

 		
 Introduction

 		
 Login Page

 		
 Navigating the Market

 		
 Navigating your Profile

 		
 Buying a Book

 		
 Selling a Book

 		
 Front End Description

 		
 Overview

 		
 Technologies Used

 		
 API Guide

 		
 1. Adding Books to the Database

 		
 2. Adding a User to the Database

 		
 3. Adding a Listing to the Database

 		
 4. User -> Listing -> Book

 		
 5. Book -> Listing -> User

 		
 6. Loading the Home Page

 		
 7. Deleting Objects

 		
 API Autodoc

 		
 book

 		
 listing

 		
 user

 		
 Analysis Document

 		
 Risk Factors

 		
 Time

 		
 Technical Feasibility

 		
 Personnel Expertise

 		
 College Administration

 		
 Resources

 		
 Front-End

 		
 Back-End

 		
 Documentation

 		
 Project logistics

 		
 Projections

 		
 Team Organization

 		
 Schedule

 		
 Project value

 		
 Design Document

 		
 Objective

 		
 Team

 		
 Front-End

 		
 User Stories

 		
 Use Case Diagram

 		
 User Interfaces

 		
 Search

 		
 Components

 		
 Back-End

 		
 Infrastructure

 		
 Databases

 		
 Search Algorithms and Implementation

 		
 Classes

 		
 API

 		
 Documentation

 		
 Documentation Plan

 		
 Schedule

 		
 Master Schedule

 		
 Weekly Schedules

 		
 Map of Requirements for Implementation

 		
 User Account

 		
 List a Book for Sale

 		
 Search for Books

 		
 Reserve a Book

 		
 Security Plan

 		
 Testing

 		
 Front End

 		
 Back End

 		
 Ethical Concerns

 		
 Helpful Links

 		
 Documentation

 		
 Front-End

 		
 Back-End

 		
 Git/GitHub

 		
 Meeting Notes Workflow

 		
 Requirements Document

 		
 User account

 		
 List a book for sale

 		
 Search for books

 		
 Reserve a book

 		
 Meeting Notes

 		
 Jan 23 Tue - Initial Project Vote

 		
 Jan 24 Wed - Minimum Viable Product

 		
 Components

 		
 Actions

 		
 Other

 		
 Jan 30 Tue - Requirements Brainstorming

 		
 MVP Components

 		
 Non-MVP Components

 		
 Account creation

 		
 Story

 		
 Tasks

 		
 Jan 31 Wed - Ethical Implications

 		
 Feb 06 Tue - Planning and Workshopping

 		
 Feb 20 Tue - Wrapping Up Analysis

 		
 Feb 27 Tue - GitHub Migration

 		
 GitHub

 		
 Migration Process

 		
 Apr 03 Tue - Funding Update

 		
 Jan 26 Fri - UI Design

 		
 Jan 30 Tue - Front-End Tools and Design

 		
 Feb 2 Fri - Overall Architecture

 		
 Feb 05 Mon - Details and Desired Functionality

 		
 Feb 06 Tue - Tool Tutorials

 		
 Feb 09 Fri - Random

 		
 Feb 06 Tue - Team Organization and OAuth

 		
 OAuth

 		
 Feb 28 Wed - API Basics

 		
 Frontend/API Actions

 		
 Database Structure

 		
 Mar 27 Tue - API Endpoints

 		
 Apr 03 Tue - API